Skip to main content

Joe Near

Data Pipeline Challenges of Privacy-Preserving Federated Learning

Posted by: , and , Posted on: - Categories: Data, Data collection, Data-driven technology, Data-sharing, PETs Blogs

This post is part of a series on privacy-preserving federated learning. The series is a collaboration between the Responsible Technology Adoption Unit (RTA) and the US National Institute of Standards and Technology (NIST). Learn more and read all the posts …

Protecting Model Updates in Privacy-Preserving Federated Learning

Posted by: and , Posted on: - Categories: Data, Data collection, Data-driven technology, Data-sharing, PETs Blogs

In our second post we described attacks on models and the concepts of input privacy and output privacy. ln our previous post, we described horizontal and vertical partitioning of data in privacy-preserving federated learning (PPFL) systems. In this post, we …

Data Distribution in Privacy-Preserving Federated Learning

Posted by: , , and , Posted on: - Categories: Data, Data collection, Data-driven technology, Data-sharing, PETs Blogs

This post is part of a series on privacy-preserving federated learning. The series is a collaboration between the Responsible Technology Adoption Unit (RTA) and the US National Institute of Standards and Technology (NIST). Learn more and read all the posts …

Privacy Attacks in Federated Learning

This post is part of a series on privacy-preserving federated learning. The series is a collaboration between CDEI and the US National Institute of Standards and Technology (NIST). Learn more and read all the posts published to date on the …

The UK-US Blog Series on Privacy-Preserving Federated Learning: Introduction

This post is the first in a series on privacy-preserving federated learning. The series is a collaboration between CDEI and the US National Institute of Standards and Technology (NIST). Advances in machine learning and AI, fuelled by large-scale data availability …